Skip to Content
No preview available


Download Analytics Citations

Export to: EndNote  |  Zotero  |  Mendeley


This file is not currently in any collections.

Photoassociation of ultracold CsYb molecules and determination of interspecies scattering lengths [dataset] Open Access

This thesis reports the first measurements of the ground state binding energies of CsYb molecules and the scattering lengths of the Cs+Yb system. The knowledge gained from these measurements will be essential for devising the most efficient route for the creation of rovibrational ground state CsYb molecules. CsYb molecules in the rovibrational ground state possess both electric and magnetic dipole moments which opens up a wealth of applications in many areas of physics and chemistry. \\ We also present the setup of a crossed beam optical dipole trap and the investigation of precooling and loading of Yb into the dipole trap. Evaporative cooling in the dipole trap results in the reliable production of Bose-Einstein condensates with $4 \times 10^{5}$ $^{174}$Yb atoms. In addition to five bosonic isotopes, Yb also possesses two fermionic isotopes $^{173}$Yb and $^{171}$Yb. We describe the necessary changes required to cool fermionic $^{173}$Yb atoms and report the production of a six-component degenerate Fermi gas of $8 \times 10^{4}$ $^{173}$Yb atoms with a temperature of 0.3~$T_{\rm F}$. \\ As well as the ability to cool Yb to degeneracy, we present the production of Bose-Einstein condensates containing $5 \times 10^{4}$ $^{133}$Cs atoms. Effective cooling of Cs is achieved using Degenerate Raman sideband cooling, which enables $6 \times 10^{7}$ Cs atoms to be cooled to below $2 \, \mu$K and polarised in the $\ket{F=3, m_{F}=+3}$ state with 90~\% efficiency. \\ Finally, we report the production of ultracold heteronuclear Cs$^*$Yb and CsYb molecules using one-photon and two-photon photoassociation respectively. For the electronically excited Cs$^*$Yb molecules we use trap-loss spectroscopy to detect molecular states below the Cs($^{2}P_{1/2}$) + Yb($^{1}S_{0}$) asymptote. For $^{133}$Cs$^{174}$Yb, we observe 13 rovibrational states with binding energies up to $\sim$500\,GHz. In addition, we produce ultracold fermionic $^{133}$Cs$^{173}$Yb and bosonic $^{133}$Cs$^{172}$Yb and $^{133}$Cs$^{170}$Yb molecules. From mass scaling, we determine the number of vibrational levels supported by the 2(1/2) excited-state potential to be 154 or 155.


Resource type
Creator: Guttridge, Alex 1
1 Durham University, UK
Engineering and Physical Sciences Research Council (EPSRC)
Research methods
Other description
Bose-Einstein condensation
Ultracold molecules
Atomic Physics
Bose-Einstein condensation
Cited in
All rights reserved All rights reserved
Durham University
Date Created

File Details

A. Guttridge
Date Uploaded
Date Modified
3 October 2018, 15:10:17
Audit Status
Audits have not yet been run on this file.
File format: zip (ZIP Format)
Mime type: application/zip
File size: 31206277
Last modified: 2018:10:02 17:28:16+01:00
Original checksum: 0cc5b50f0e0e6850ed4d465cde15e055
Activity of users you follow
User Activity Date
User A. Guttridge has updated Photoassociation of ultracold CsYb molecules and determination of interspecies scattering lengths [dataset] 10 months ago