Title: Dataset of monitoring approaches to assess hydrological conditions in small Natural Flood Management (NFM) catchments

Author: Anthony D. Jones¹

¹ Department of Earth Sciences, Durham University, Durham, DH1 3LE

Reviewed by: Julia L. A. Knapp¹, Sim M. Reaney^{2, 3} & Ian Pattison⁴

² Department of Geography, Durham University, Durham, DH1 3LE, UK

³ Institute of Hazard, Risk and Resilience, Durham University, Durham, DH1 3LE, UK

⁴ School of Energy, Geoscience, Infrastructure and Society, Heriot Watt University, Edinburgh, Scotland, UK, EH14 4AS

Description: This dataset includes identified records from a systematic review of streamflow monitoring approaches in small catchments (<25 km²) with Natural Flood Management (NFM) interventions. Studies were only included in this dataset if they provided sufficient detail and met the following three key criteria: (i) a catchment size under 25 km², (ii) implementation of an NFM-type intervention (e.g., leaky dams, land-use change, ponds), and (iii) recorded evidence of hydrological monitoring of streamflow. This dataset includes 65 catchments. Each record contains: paper ID, catchment name, publication type (academic, thesis, or grey literature), monitoring duration (expressed in years as a decimal, e.g., 1.25 years = 15 months), data collection period (month/year to month/year), data collection frequency (e.g. 15 minutes), catchment size (km²), rural or urban classification, country, NFM interventions used, NFM monitoring cost requirements, model output type (1D, 2D, 1D-2D, or bespoke), rainfall monitoring, study purpose, monitoring equipment, control section, streamflow monitoring method (e.g., direct measurement, velocity-area, formed constriction, non-contact), and overall NFM project cost. Catchment data was extracted through a two-stage process: (1) Initial searches were conducted using the "AskYourPDF.v2" plugin in ChatGPT. (2) Outputs were subsequently manually assessed, revised, and verified. It is important to acknowledge the primary caveats associated with the size and structure of this dataset, which was developed exclusively from publicly available data. First, the dataset was compiled using a limited set of search terms, and all searches were conducted in English. The review timeframe spans from January 2007 to September 2024, with records identified from academic papers, theses, and grey literature published within this period. Grey literature sources wales (NRW), the Socttish Environment Protection Agency (SEPA), and the first 150 results returned by Google. Although a broad range of NFM i

Date of Data Collection: October 2024

Paper ID	Catchment Name	Authors	Publication Type	Monitoring Duration (years)	Duration of Data Collection (Years)	Data Collection Frequency	Catchment Size (km²)	Rural or Urban	Country	NFM Interventions	NFM Monitoring Cost Requirements	Model Output	Rainfall Monitoring	Study Purpose	Monitoring Equipment	Control Section	Streamflow Monitoring	NFM Project Cost
1	Gav-	(Amini et	А	0.8	Rainfall:	Rainfall:	6.27	Rural	Iran	- 31 boulder and gabion	NR	Model Type:	√	Comparison between simulated	Rainfall: Not installed as part of study –	None	Velocity-Area	US\$31,000
	Darreh	al., 2014)			May 2011 -	NR				check dams		1D		streamflow data from rainfall	adjacent data from Sanandaj Airport		Methods	
					March 2012					- 8.3ha afforestation		Model		model to observed event data	Station			
					Streamflow:	Streamflow:				- 3ha agro-forestry		Name: HEC-		to assess the impact of	Streamflow: Event - 17 May 2011.		Hand-held	
					May 2011-	NR						HMS		watershed managements on	Instrumentation: Limnigraph		Velocity Meter	
					March 2012									runoff storage and peak flow				
2	Veneto	(Baggio et	А	2	Rainfall:	Rainfall:	0.004	Rural	Italy	- 3 No. NBS structures	NR	NR	\checkmark	To assess the hydrological	Rainfall: 0.8km from interventions.	Crested	Formed	NR
	Region	al., 2023)			2 years (2020-	5 mins				(rain garden – 67m²,				impact of the NFM structures	Instrumentation: HD2015 Tipping Bucket	weir	constriction	
					2021)					bioretention area 44m ² ,				following two years of	Rain Gauge		methods	
					Streamflow: 2	Streamflow: 2				rain garden 172m ²)				monitoring at the inlet and	Streamflow: Stage Measurement with a		Weir Methods	
					years (2020-	mins (1 hour								outlet of the interventions	crest weir			
					2021)	below weir)									Instrumentation: Datalogger Dipper PT			
3	Eye Brook	(Biggs et al.,	А	8	Rainfall:	Rainfall:	10.8	Rural	UK	- Permeable dams	NR	Model Type:	\checkmark	A demonstration project aimed	Rainfall: Only shown as daily totals –	None	Velocity-Area	£200k
		2014, 2021;			January 2012-	Daily				- Bunded ditch		1D		at evaluating the effectiveness	distance not referenced		Methods	(including
		Villamizar et			2020					- Flood Storage Basin		Model		of large-scale mitigation				Barkby
		al., 2024)			Streamflow:	Streamflow:				- Field edge wetlands		Name:		measures to reduce the impact	Streamflow: Initially calculated (2012)		Hand-held	Brook)
					January 2012-	15 mins				- Support for improved		MIKE11		of rural land use on streams,	using manual gauging. Streamflow has		Velocity Meter	
					2020					soil management		Hydrological		while maintaining the	been monitored continuously (2013		(2012)	
												SWAT		profitability of farm businesses	onwards)		Current Meter	
												Model					(2013 onwards)	

Coded terms: NR: Not recorded in reviewed papers. Mins: minutes. Costs (k = thousand | m = million)

4	Stonton	(Biggs et al.,	А	8	Rainfall:	Rainfall:	7.7	Rural	UK	- Clean water ponds	NR	Model Type:	\checkmark	A demonstration project aimed	Rainfall: Only shown as daily totals –	None	Velocity-Area	£200k
	Brook	2014, 2021;			January 2012-	Daily				- Log bunded ditch		1D		at evaluating the effectiveness	distance not referenced		Methods	(including
		Villamizar et			2020					- Woody debris dam		Model		of large-scale mitigation				Eye Brook)
		al., 2024)			Streamflow:	Streamflow:						Name:		measures to reduce the impact	Streamflow: Initially calculated (2012)		- Hand-held	
					January 2012-	15 mins						MIKE11		of rural land use on streams,	using manual gauging. Streamflow (2013		Velocity Meter	
					2020							Hydrological		while maintaining the	onwards)		(2012)	
												SWAT		profitability of farm businesses			- Current Meter	
												Model					(2013 onwards)	
5	Craigburn	(Black et al.,	А	12.7	Rainfall:	Rainfall:	4.34	Rural	UK	- Flow restrictors	£205k	NR	\checkmark	Assessment of NFM on lag time	Rainfall: Multiple in wider Eddleston	None	Velocity-Area	£1.4m (total
		2021;			2012-Present	15 mins				- 3No. of ponds				and peak flow across multiple	catchment plus SEPA gauge		Methods	Eddleston
		Comins,								- 300m length of re-				small sub-catchments within	Instrumentation: ARG100 rain gauges			Project)
		2021)								- 3 Aba riparian planting				the wider Eddleston catchment	RIMCO RIM8020 rain gauges			
					Streamflow:	Streamflow:								study	Streamflow: Stage measurement with		Hand-held	
					2012-Present	15 mins									manual gauging for rating curve validation		Velocity Meter	
															Instrumentation: Pressure (unvented)			
5	Middle	(Black et al.,	А	12.7	Rainfall:	Rainfall:	2.3	Rural	UK	- Flow restrictors	£205k	NR	\checkmark	Assessment of NFM on lag time	Rainfall: Multiple within wider Eddleston	None	Velocity-Area	£1.4m (total
	Burn	2021)			2012-Present	15 mins				- 2ha riparian planting				and peak flow across multiple	catchment plus SEPA gauge		Methods	Eddleston
														small sub-catchments within	Instrumentation: ARG100 rain gauges			Project)
														the wider Eddleston catchment	RIMCO RIM8020 rain gauges			
					Streamflow:	Streamflow:								study	Streamflow: Stage measurement with		Hand-held	
					2012-Present	15mins									manual gauging for rating curve validation		Velocity Meter	
															Instrumentation: P ressure (unvented)			
5	Eddleston	(Black et al.,	Α	12.7	Rainfall:	Rainfall:	6.89	Rural	υк	- 7.5ha riparian planting	f205k	NR	1	Assessment of NFM on lag time	Rainfall: Multiple within wider Eddleston	None	Velocity-Area	f1.4m (total
5	School	2021)			2012-Present	15 mins				, iona npanan pianang			ľ	and peak flow across multiple	catchment plus SEPA gauge		Methods	Eddleston
	School	2021)												small sub-catchments within	Instrumentation: ARG100 rain gauges		methods	Project)
														the wider Eddleston catchment	RIMCO RIM8020 rain gauges			Trojecty
					Streamflow:	Streamflow:	-							study	Streamflow: Stage measurement with		Hand-beld	
					2012-Present	15mins								Study	manual gauging for rating curve validation		Velocity Meter	
					2012-11636110	13111113									Instrumentation: P ressure (unvented)		velocity weter	
5	Swindolo	(Rond at al	^	0.5	Painfall	Painfall	2.66	Pural		Grassland management	ND	Model Type:	v	Study sime to quantify how	Painfall: NP	Voc –	Formod	ND
5	Swindale			0.5	NR	NR	2.00	Kurai	UK	through grazing and		N/A	^	social vogotation changes		nortable	Constriction	INIT
		2020)								cutting		Model		influence overland flow		hillslopp	Mothods	
					Streemflow	Stroomflown 1	-			cutting		Rospoko		velocities in boodwater	Streemflow Flow value it measured with	flumo	Flume Method	
					April	Streaminow. 1						Bespoke		hillslongs to bottor understand	Elucroscoin Tracer Testing	nume	- Fluine Methou	
					April-	mm								their role in delaying	Fluorescelli Tracer Testing.			
					2010									downstroom flood pooks	fluoremeter wired to CD220V data langer		ITALEI	
6	Dudlaich	(Duasian at	6	12 5	2019 Deinfelli	Deinfell	6.2	Durrel		Deauer Deaue	ND	Madal Tura	, I	Whathan flow regimes and flow	Deinfelly Deden dete derived from the	V/ Netek	Fourse of	ND
6	Budielgn	(Brazier et	G	12.5	Rainfall:		0.3	Rurai	UK	- Beaver Dams	INK	iviodei Type:	√	whether now regimes and now	Rainfall: Radar data derived from the	V-INOTCH	Formed	NR
	BLOOK	al., 2020;			November	5 mins	(5.5					N/A		responses to storm events	NINIROD system was used	weir	Constriction	
		Granam,			2015-March		contro					iviodel:		were altered following the			Methods	
		ZUZZ;			2019	Church and Ch	i site)					Generalized		building of beaver dams and		-		
		Puttock et			Streamflow:	Streamflow:						Additive		whether a flow attenuation	Streamflow: Non-rated EA gauge that has		Weir Methods	
		al., 2021)			July 2009-	15mins						IVIODEIS		effect could be significantly	been rated with flow meter for 2 months			
					2022							(GAIVIS)		attributed to beaver activity	(between December 2019 - February 2020)			
															Instrumentation: NivuFlow Mobile 750			
7	Loddingto	(Deasy et	A	5	Rainfall:	Rainfall and	~0.00	Rural	UK	- Land use changes	NR	Model Type:	X	Study considers runoff data	Rainfall and Runoff: 20 No. adapted tipping	None	Direct	NR
	n	al., 2014)			November	5 mins for 17	17					N/A		from arable in-field land	buckets for runoff capture for downstream		Methods	
					2017 – April	hillslone areas						Model:		management options to	comparison		Methods	
					2018	misiope dieds						Mixed-		investigate their potential to				
					Streamflow:							modelling		reduce downstream flooding			Volumetric	
					November							approach					Gauging	
					2017–April													
					2018													
8	Higher	(Devon	G	4	Rainfall:	Rainfall:	2	Rural	UK	- Log jams	£7k	Not	I	Investigating how log jams and	Rainfall: Rain gauge located 2 km from	None	Velocity-Area	£101k
	Boode	County			January 2017	15mins				- Hedgerows		referenced		hedgerows can mitigate	NFM interventions		Methods	
	Farm	Council,			- 2020									downstream flooding	Instrumentation: Kalyx tipping bucket rain			

		2023)													gauge			
					Streamflow: January 2017 – 2020	Streamflow: 15mins									Streamflow: Level sensor and Area Velocity Flow Meter		Hand-held Velocity Meter	
9	Backstone Beck	(European Commission	G	5.7	Rainfall: NR	Rainfall: NR	0.75	Urban	UK	- Leaky barriers - Earth bunds	NR	NR	x	Build an open-source rain-on- grid catchment and river model	Rainfall: NR	NR	Velocity-Area Methods	£417k
		, 2023)			Streamflow: September 2019-Present	Streamflow: 15mins								for the Backstone Beck to assess the effects of NFM interventions on downstream flooding	Streamflow: Water level at three locations (Ilkley Moor, Sacred Hart and Leeds Road) Instrumentation: 4-20mA pressure sensors plus Hydro-Logic data loggers		- Hand-held Velocity Meter -Fluorescent Tracer	
10	Calder	(Ferguson & Fenner, 2020)	A	5.7	Rainfall: July 2004-2020	Rainfall: 5 mins	18	Urban	UK	 Tree planting In-channel woody debris 	NR	Model Type: 1D-2D Model: Dynamic	~	The rural response to NFM interventions characterized using hydrological (Dynamic TOPMODEL) and hydraulic	Rainfall: Not installed as part of study – 2 No. rain gauges in adjacent catchment	None	Formed Constriction Methods	£500k
					Streamflow: January 2013 gauge)- 2017	Streamflow: 15mins						TOPMODEL, HEC-RAS, Infoworks ICM		(HEC-RAS) models	Streamflow: Rated an EA gauge that had previously not been rated using a Manning's equation		Formed Constriction Methods - Culvert	
11	Bodenha m Brooks	(Herefordsh ire Council, 2024)	G	5.7	Rainfall: 2019 – Present Streamflow: 2019 – Present	Rainfall: 15 mins Streamflow: 15 mins	10.1	Rural	UK	- Land use changes - Tree planting	£77k (with other sites)	NR	V	Assessed flood risk reduction in Herefordshire communities, with £20.3k spent on monitoring across seven sites under a £77k contract with Hydro International Data	Rainfall: Telemetered rainfall monitoring station, station distance not referenced Streamflow: -Stage measurements telemetered and available online converted with flow gauging -Fixed point photography monitoring with volunteer involvement	None	Velocity-Area Methods Hand-held Velocity Meter	£1.27m (for 7 sites in total)
11	Norton, Red & Twyford Brooks	(Herefordsh ire Council, 2024)	G	5.7	Rainfall: 2019 – Present Streamflow: 2019 – Present	Rainfall: 15 mins Streamflow: 15 mins	8.9	Rural	UK	- Land use changes - Tree planting	£77k (with other sites)	NR	V	Assessed flood risk reduction in Herefordshire communities, with £20.3k spent on monitoring across seven sites under a £77k contract with Hydro International Data	Rainfall: Rain gauge installed as part of assessment; station distance not referenced Streamflow: -Stage measurements telemetered and available online converted with flow gauging -Fixed point photography monitoring with volunteer involvement	None	Velocity-Area Methods Hand-held Velocity Meter	£1.27m (for 7 sites in total)
11	Pentaloe Brook	(Herefordsh ire Council, 2024)	G	1	Rainfall: 2019 – Present Streamflow: 2019 – Present	Rainfall: 15 mins Streamflow: 15 mins	9	Rural	UK	 Leaky dams In-ditch seepage barrier Land use changes Tree planting 	£77k (with other sites)	NR	~	Assessed flood risk reduction in Herefordshire communities, with £20.3k spent on monitoring across seven sites under a £77k contract with Hydro International Data	Rainfall: Telemetered rainfall monitoring station, station distance not referenced Streamflow: -Stage measurements telemetered and available online converted with flow gauging -Fixed point photography monitoring with volunteer involvement	None	Velocity-Area Methods Hand-held Velocity Meter	£1.27m (for 7 sites in total)
11	Tedstone Brook	(Herefordsh ire Council, 2024)	G	8	Rainfall: 2019 – Present Streamflow: 2019 – Present	Rainfall: 15 mins Streamflow: 15 mins	20.7	Rural	UK	 Leaky dams In-ditch seepage barrier Land use changes Tree planting 	£77k (with other sites)	NR	√	Assessed flood risk reduction in Herefordshire communities, with £20.3k spent on monitoring across seven sites under a £77k contract with Hydro International Data	Rainfall: Telemetered rainfall monitoring station, station distance not referenced Streamflow: Stage measurements telemetered and available online converted with flow gauging -Fixed point photography monitoring with volunteer involvement	None	Velocity-Area Methods Hand-held Velocity Meter	£1.27m (for 7 sites in total)
12	Bateman Creek	(Janzen & Westbrook, 2011)	A	3	Rainfall: June- August in 2006 and 2007 Streamflow: June-August in 2006 and 2007	Rainfall: NR Streamflow: 15 mins	0.63	Rural	Can ada	- Beaver Dams	NR	NR	V	This study investigates how beaver dams influence vertical and lateral hyporheic exchange in channelled peatlands, aiming to improve understanding of stream-riparian connectivity and subsurface water flow pathways in peat systems	Rainfall: Rain gauge located 0.005km from site Instrumentation: HOBO tipping bucket rain gauge Streamflow: Piezometer nests were included (3 in total) with a total of 70 piezometer sensors	None	Velocity-Area Methods Hand-held Velocity Meter	NR

13	Highland Water Brackenh	(Kitts, 2010) (Labadz et	T	7.1 5.2	Rainfall: NR Streamflow: 1998-2006 (1 Gauge) 2003-2006 (4 Gauges) Rainfall: Not	Rainfall: NR Streamflow: Up to 5 mins Rainfall: 5	6	Rural	UK	- Large woody debris - Lowered floodplain	NR £17.5k	Model Type: 2D Model: Hydro2de Model Type:	✓ ✓	Examines the role that large wood plays at a range of scales in a low-order forested stream Assess the extent to which	Rainfall: Not installed as part of study but already in the vicinity, nearby but distance unspecified Streamflow: Salt dilution gauging to get stage-Streamflow relationship Instrumentation: Thalimedes Shaft Encoder -Druck PDCR1830 PT -Trans-America PT Rainfall: 3 No. rain gauges located 0.7km	None	Velocity-Area Methods Salt Dilution Gauging Formed	£2.9m £100k
	urst	al., 2021; Nottingham shire Council, 2023; Wells, 2019)			Specified Streamflow: December 2013 – 2021 November 2015 - 2021	Mins Streamflow: 5 mins				- Unline storage - Bunds in corner fields - Woody debris dams		1D-2D Model: ISIS TUFLOW		NFM can help reduce future fluvial flood occurrence in Southwell	Streamflow: 5No. water level and 2No. telemetered level gauges. To develop the rating curve for each bund, they calculated storage volume at 10 cm water level intervals and used this plot to estimate storage volume. Instrumentation: Electromagnetic flow meter		Construction Methods - Formed Constriction Methods - Culvert - Bund - Electromagnetic method	
15	Cebu	(Lalisan & Fornis, 2020)	A	0.1	Rainfall: October 1-8, 2018 Streamflow: October 1-8, 2018	Rainfall: 15 mins Streamflow: Not specified	3	Urban	Phili ppin es	- Detention ponds	NR	Model Type: 1D Model: HEC-HMS	V	This study evaluates the flood attenuation performance of runoff storage basins in a small, steep urban catchment in Cebu, to determine their effectiveness and justify land use trade-offs, using field- calibrated simulations	Rainfall: Rain gauge already in vicinity, less than <2km from the site Streamflow: Stage measurement with velocity measurements, full details not provided	None	Velocity-Area Methods Hand-held Velocity Meter	NR
16	Halsewate r	(Lockwood, 2022)	Т	2.7	Rainfall: April 2018 – December 2020 Streamflow: April 2018 – December 2020	Rainfall: 1 min Streamflow: 5 mins	6.18	Rural	UK	- Two floodplain storage ponds with inlet channels and outlet tunnels	NR	NR	✓	Monitor the hydraulic performance of NFM features in a working catchment, assess how interventions affect flow attenuation and peak discharge	Rainfall: Rain gauge deployed next to interventions. Instrumentation: HOBO RG3-M Streamflow: 4 No. gauges in-channel (upstream/downstream), in-pond (upstream/downstream)	None	Velocity-Area Methods Hand-held Velocity Meter	NR
16	Merriott	Lockwood, 2022)	Т	2.1	Rainfall: November 2018 – December 2020 Streamflow: November 2018 – December 2020	Rainfall: 1 min Streamflow: 5 mins	6.1	Rural	UK	- Two floodplain storage ponds with inlet and outflow channels	NR	NR	✓	Monitor the hydraulic performance of NFM features in a working catchment, assess how interventions affect flow attenuation and peak discharge	Rainfall: Rain gauge deployed next to interventions Instrumentation: HOBO RG3-M Streamflow: 4 No. gauges in-channel (upstream/downstream), in-pond (upstream/downstream)	None	Velocity-Area Methods Hand-held Velocity Meter	NR
16	Wellhams	Lockwood, 2022)	Т	2/1	Rainfall: November 2018 – December 2020 Streamflow: November 2018 – December 2020	Rainfall: 1 min Streamflow: 5 mins	0.96	Rural	UK	- Two sections of in- channel - Leaky woody dams	NR	NR	V	Monitor the hydraulic performance of NFM features in a working catchment, assess how interventions affect flow attenuation and peak discharge	Rainfall: Rain gauge deployed next to interventions Streamflow: 2 No. gauges in-channel (upstream/downstream pond)	None	Velocity-Area Methods Hand-held Velocity Meter	NR

16	Marcomb e Lake	Lockwood, 2022)	Т	2	Rainfall: December 2018 – December 2020 Streamflow: December 2018 – December 2020	Rainfall: 1 min Streamflow: 5 mins	1.05	Rural	UK	- Two online ponds	NR	NR	~	Monitor the hydraulic performance of NFM features in a working catchment, a ssess how interventions affect flow attenuation and peak discharge	Rainfall: Deployed at Wellhams for Marcombe Bay. Tipping bucket - EA Gauge Streamflow: 4 No. gauges in-channel	None	Velocity-Area Methods Hand-held Velocity Meter	NR
17	Tebay Dams	(Mindham et al., 2023)	A	3.6	Rainfall: May 2019- December 2022 Streamflow: May 2019-	Rainfall: 5mins Streamflow: 5 mins	0.007 1	Rural	UK	- Enhanced Hillslope Storage (in peat)	NR	Model Type: N/A Model: Transfer Function	~	This study uses a data-based mechanistic approach to investigate how varying antecedent conditions influence hydrograph shape in upland UK micro-basins	Rainfall: Telemetered tipping-bucket rain gauge next to flume Streamflow: FRPB trapezoidal flume (maximum capacity of 430 l/s) with a	FRPB Trapezoi dal Flume	Formed Constriction Methods Flume Methods	NR
17	Tebay Gill	(Mindham et al., 2023)	A	3.9	December 2022 Rainfall: January 2019- December 2022 Streamflow: January 2019- December 2022	Rainfall: 5mins Streamflow: 5 mins	0.116 3	Rural	UK	- Enhanced Hillslope Storage (in peat)	NR	Model Model Type: N/A Model: Transfer Function Model	1	This study uses a data-based mechanistic approach to investigate how varying antecedent conditions influence hydrograph shape in upland UK micro-basins	known rating curve and a known basin size Rainfall: Telemetered tipping-bucket rain gauge next to flume Streamflow: FRPB trapezoidal flume (maximum capacity of 430 l/s) with a known rating curve and a known basin size	FRPB Trapezoi dal Flume	Formed Constriction Methods Flume Methods	NR
17	Fallgill Syke	(Mindham et al., 2023)	A	4.3	Rainfall: August 2018- December 2022 Streamflow: August 2018- December 2022	Rainfall: 5mins Streamflow: 5 mins	0.143 9	Rural	UK	- Enhanced Wet-Canopy Evaporation ('scrub planting')	NR	Model Type: N/A Model: Transfer Function Model	✓	This study uses a data-based mechanistic approach to investigate how varying antecedent conditions influence hydrograph shape in upland UK micro-basins	Rainfall: Telemetered tipping-bucket rain gauge next to flume Streamflow: FRPB trapezoidal flume (maximum capacity of 430 l/s) with a known rating curve and a known basin size	FRPB Trapezoi dal Flume	Formed Constriction Methods Flume Methods	NR
17	Bareleg	(Mindham et al., 2023)	A	3.7	Rainfall: April 2019- December 2022 Streamflow: April 2019- December	Rainfall: 5mins Streamflow: 5 mins	0.154	Rural	UK	 Enhanced In-Channel Storage Enhanced Floodplain Storage 	NR	Model Type: N/A Model: Transfer Function Model	~	This study uses a data-based mechanistic approach to investigate how varying antecedent conditions influence hydrograph shape in upland UK micro-basins	Rainfall: Telemetered tipping-bucket rain gauge next to flume Streamflow: FRPB trapezoidal flume (maximum capacity of 430 l/s) with a known rating curve and a known basin size	FRPB Trapezoi dal Flume	Formed Constriction Methods Flume Methods	NR
17	Sedbergh	(Mindham et al., 2023)	A	3.3	2022 Rainfall: October 2018- February 2022 Streamflow: October 2018- February 2022	Rainfall: 5mins Streamflow: 5 mins	0.173 2	Rural	UK	- Enhanced In-Channel Storage ('debris dams')	NR	Model Type: N/A Model: Transfer Function Model	✓	This study uses a data-based mechanistic approach to investigate how varying antecedent conditions influence hydrograph shape in upland UK micro-basins	Rainfall: Telemetered tipping-bucket rain gauge next to flume Streamflow: FRPB trapezoidal flume (maximum capacity of 430 l/s) with a known rating curve and a known basin size	FRPB Trapezoi dal Flume	Formed Constriction Methods Flume Methods	NR
17	Penny Gill	(Mindham et al., 2023)	A	3.9	Rainfall: January 2019- December 2022 Streamflow: January 2019- December 2022	Rainfall: 5mins Streamflow: 5 mins	0.211 8	Rural	UK	- Enhanced In-Channel Storage ('horse-jump' log dams)	NR	Model Type: N/A Model: Transfer Function Model	~	This study uses a data-based mechanistic approach to investigate how varying antecedent conditions influence hydrograph shape in upland UK micro-basins	Rainfall: Telemetered tipping-bucket rain gauge next to flume Streamflow: FRPB trapezoidal flume (maximum capacity of 430 l/s) with a known rating curve and a known basin size	FRPB Trapezoi dal Flume	Formed Constriction Methods Flume Methods	NR
17	Sware Gill	(Mindham et al., 2023)	A	4.3	Rainfall: August 2018- December 2022 Streamflow: August 2018- December 2022	Rainfall: 5mins Streamflow: 5 mins	0.235 6	Rural	UK	- Grassland reference for managed conifer basin	NR	Model Type: N/A Model: Transfer Function Model	✓	This study uses a data-based mechanistic approach to investigate how varying antecedent conditions influence hydrograph shape in upland UK micro-basins	Rainfall: Telemetered tipping-bucket rain gauge next to flume Streamflow: FRPB trapezoidal flume (maximum capacity of 430 l/s) with a known rating curve and a known basin size	FRPB Trapezoi dal Flume	Formed Constriction Methods Flume Methods	NR

17	Eggerslack	(Mindham et al., 2023)	A	4.3	Rainfall: August 2018- December 2022 Streamflow: August 2018- December 2022	Rainfall: 5mins Streamflow: 5 mins	0.305	Rural	UK	- Enhanced Wet-Canopy	NR	Model Type: N/A Model: Transfer Function Model	✓	This study uses a data-based mechanistic approach to investigate how varying antecedent conditions influence hydrograph shape in upland UK micro-basins	Rainfall: Telemetered tipping-bucket rain gauge next to flume Streamflow: FRPB trapezoidal flume (maximum capacity of 430 l/s) with a known rating curve and a known basin size	FRPB Trapezoi dal Flume	Formed Constriction Methods Flume Methods	NR
17	Setterah	(Mindham et al., 2023)	A	2.2	Rainfall: October 2020- December 2022 Streamflow:	Rainfall: 5mins Streamflow: 5	0.374 9	Rural	UK	- Enhanced In-Channel Storage (beaver dams)	NR	Model Type: N/A Model: Transfer	~	This study uses a data-based mechanistic approach to investigate how varying antecedent conditions influence hydrograph shape in	Rainfall: Telemetered tipping-bucket rain gauge next to flume Streamflow: FRPB trapezoidal flume	FRPB Trapezoi dal Flume	Formed Constriction Methods Flume Methods	NR
					December 2022	mins						Model		upland OK micro-basins	(maximum capacity of 430 l/s) with a known rating curve and a known basin size			
17	Stock Beck East	(Mindham et al., 2023)	A	2	Rainfall: October 2020- October 2022 Streamflow: October 2020- October 2022	Rainfall: 5mins Streamflow: 5 mins	0.472 5	Rural	UK	 Enhanced Hillslope Storage (bunds, stone wall, wooden walls) Enhanced Wet-Canopy Evaporation 	NR	Model Type: N/A Model: Transfer Function	~	This study uses a data-based mechanistic approach to investigate how varying antecedent conditions influence hydrograph shape in upland UK micro-basins	Rainfall: Telemetered tipping-bucket rain gauge next to flume Streamflow: FRPB trapezoidal flume (maximum capacity of 430 l/s) with a known rating curve and a known basin size	FRPB Trapezoi dal Flume	Formed Constriction Methods Flume Methods	NR
17	Ravensgill Beck	(Mindham et al., 2023)	A	3.8	Rainfall: February 2019- December 2022	Rainfall: 5mins	0.587	Rural	UK	- Enhanced Soil Permeability (blade aeration)	NR	Model Type: N/A Model: Transfer	✓	This study uses a data-based mechanistic approach to investigate how varying antecedent conditions influence hydrograph shape in	Rainfall: Telemetered tipping-bucket rain gauge next to flume	FRPB Trapezoi dal Flume	Formed Constriction Methods	NR
					Streamflow: February 2019- December 2022	Streamflow: 5 mins						Function Model		upland UK micro-basins	Streamflow: FRPB trapezoidal flume (maximum capacity of 430 l/s) with a known rating curve and a known basin size		Flume Methods	
17	Whale Beck	(Mindham et al., 2023)	A	4.3	Rainfall: June 2020- November 2022	Rainfall: 5 mins	1.143 2	Rural	UK	- Enhanced Floodplain Storage (swale)	NR	Model Type: N/A Model:	~	This study uses a data-based mechanistic approach to investigate how varying antecedent conditions	Rainfall: Telemetered tipping-bucket rain gauge next to flume	FRPB Trapezoi dal Flume	Formed Constriction Methods	NR
					Streamflow: June 2020- November 2022	Streamflow: 5 mins						Transfer Function Model		influence hydrograph shape in upland UK micro-basins	Streamflow: FRPB trapezoidal flume (maximum capacity of 430 l/s) with a known rating curve and a known basin size		Flume Methods	
17	Back Greenrigg	(Mindham et al., 2023)	A	4.3	Rainfall: September 2018- December 2022	Rainfall: 5mins	1.947 4	Rural	UK	- Enhanced Floodplain Storage (swale)	NR	Model Type: N/A Model: Transfer	✓	This study uses a data-based mechanistic approach to investigate how varying antecedent conditions influence bydrograph shape in	Rainfall: Telemetered tipping-bucket rain gauge next to flume	FRPB Trapezoi dal Flume	Formed Constriction Methods	NR
					Streamflow: September 2018- December 2022	Streamflow: 5 mins						Function Model		upland UK micro-basins	Streamflow: FRPB trapezoidal flume (maximum capacity of 430 l/s) with a known rating curve and a known basin size		Flume Methods	
17	Bessy Gill	(Mindham et al., 2023)	A	4.3	Rainfall: September 2018- December 2022	Rainfall: 5mins	2.537 1	Rural	UK	- Enhanced Floodplain Storage (swale)	NR	Model Type: N/A Model: Transfer	~	This study uses a data-based mechanistic approach to investigate how varying antecedent conditions influence hydrograph shape in	Rainfall: Telemetered tipping-bucket rain gauge next to flume	FRPB Trapezoi dal Flume	Formed Constriction Methods	NR
					Streamflow: September 2018- December 2022	Streamflow: 5 mins						Function Model		upland UK micro-basins	Streamflow: FRPB trapezoidal flume (maximum capacity of 430 l/s) with a known rating curve and a known basin size		Flume Methods	
17	Rais Beck	(Mindham et al., 2023)	A	2.3	Rainfall: November 2019-March 2022	Rainfall: 5mins	2.732 9	Rural	UK	- Enhanced Floodplain Storage (swale)	NR	Model Type: N/A Model:	~	This study uses a data-based mechanistic approach to investigate how varying antecedent conditions	Rainfall: Telemetered tipping-bucket rain gauge next to flume	FRPB Trapezoi dal Flume	Formed Constriction Methods	NR

18	Wilde Brook	(Muhaweni mana et al., 2023)	A	0.4	Streamflow: November 2019-March 2022 Rainfall: April 2019-June 2021) Streamflow: April- September 2019	Streamflow: 5 mins Rainfall: 15 mins Streamflow: 15 mins	5.3	Rural	UK	- 105No. Leaky barriers	NR	Transfer Function Model Future modelling study of the reach	~	influence hydrograph shape in upland UK micro-basins Quantify the hydrological impacts of NFM interventions implemented at a catchment scale by comparing flow responses between a treated catchment (with NFM measures) and a control catchment (without	Streamflow: FRPB trapezoidal flume (maximum capacity of 430 l/s) with a known rating curve and a known basin size Rainfall: Rain gauge installed 2km from interventions. Instrumentation: Lambrecht Tipping Bucket rain gauge Streamflow: Water level and flow velocity Instrumentation: -OTT Orpheus Mini pressure level sensor -AV 9000 Area Velocity Sensor with a Hach FL900 Flow	None	Flume Methods Velocity-Area Methods Hand-held Velocity Meter	NR
19	Belford	(Nicholson et al., 2021; Nicholson et al., 2020; Roberts et al., 2024; Wilkinson et al., 2010)	A	6	Rainfall: 2007- 2013 Streamflow: 2007-2013 (intensive monitoring)	Rainfall: 15 mins Streamflow: Rivergauge 5 mins, 15 mins RAF – 5mins	5.7	Rural	UK	- 4 No. RAFs (Runoff Attenuation Features) (September 2009) - 35 No. RAFs (Summer 2012) - 10 No. RAFs (2011)	NR	Model Type: 2D Model: Pond Network Model	~	interventions) To monitor RAFs to show that they are able to have a significant impact on the flood peak in small to medium events	Logger Rainfall: 3 No. rain gauge deployed in catchment. 1 No. rain gauge in vicinity Streamflow: 5 No. river gauge on 5-minute time series. 1 No. river gauge on 15-minute time series. 8 No. stage gauges on 5- minute time series in RAFs. Instrumentation: In-Situ Rugged TROLL 100 and van Essen Mini-Diver	None	Velocity-Area Methods Hand-held Velocity Meter	£450k
20	Coalburn	(Birkinshaw et al., 2014; Nisbet, 2021)	A	33.7	Rainfall: 1967- Present Streamflow: 1991-Present	Rainfall: Sub- Daily Streamflow: 60 mins	1.5	Rural	UK	- Upland land management	NR	NR	~	Improve understanding of how changes in upland land management impact flood risk at the catchment scale	Rainfall: 4 No. rain gauges less than 0.5km from interventions Streamflow: Water level with V notch weir	V notch weir	Formed Constriction Methods Weir Methods	NR -
20	Pontbren	(Birkinshaw et al., 2014; Nisbet, 2021; Wheater et al., 2008)	A	3	Rainfall: 2005- 2008 Streamflow: 2005-2008	Rain gauge 10 mins Streamflow: 10 mins	12	Rural	UK	- Upland land management	NR	Model Type: N/A Model: Bespoke Physics- Based Model	~	Improve understanding of how changes in upland land management impact flood risk at the catchment scale	Rainfall: 6No. Rain gauges in and out of catchment, less than 1km Streamflow: 13 No. stream flow sites (bed mounted ADV meters)	None	Velocity Area Methods Bed ADCP	NR
21	Two Lads	(Norbury et al., 2021)	А	5.1	Rainfall: August 2019 - Present Streamflow: August 2019 - Present	Rainfall: 15 mins Streamflow: 15 mins	0.72	Rural	UK	- 5No. Log jams	NR	Future modelling study of the reach	~	This study evaluates the effectiveness of willowed engineered log jams as a intervention by monitoring pre- and post-installation hydrological responses at a river reach scale	Rainfall: 1No. rain gauge as part of study located 0.09km from catchment Streamflow: 3 No. Water level sensors. All conversions of water level to streamflow are based on ratings derived from repeat spot gauging. Wildlife cameras show filling and emptying of leaky dam structures Instrumentation: HOBO U20L-04	None	Velocity-Area Methods Hand-held Velocity Meter	NR
22	Chevral	(Nyssen et al., 2011)	A	0.5	Rainfall: September 2009 – March 2010 Streamflow: September 2009 – March 2010	Rainfall: Not referenced Streamflow: Not referenced	14	Rural	Belg ium	- Beaver dams	NR	NR	~	Investigates the hydrological impacts of a series of beaver dams, assessing their influence on flood peak reduction and low flow enhancement both locally and across a sub-basin scale	Rainfall: Rain gauge already in the vicinity (8km from interventions) Streamflow: 8 No. water level sensors. Float method to determine flow velocity	None	Velocity-Area Methods Float Method	NR
23	Yorkshire	(Puttock et al., 2021)	А	3.3	Rainfall: November 2015-March 2019 Streamflow: November 2015-March 2019	Rainfall: NR Streamflow: 15 mins	7.47	Rural	UK	- Beaver dams	NR	Model Type: N/A Model: Generalized Linear Models	~	Study determines whether flow regimes and responses to storm events were altered following the building of beaver dams and whether a flow attenuation effect could be significantly attributed to beaver activity	Rainfall: Radar data derived from the NIMROD system (Met Office, 2003) was used across sites Streamflow: An area-velocity flow meter with a stage gauge. Instrumentation: NivuFlow Mobile 750 (Flow Meter), MX2001, HOBO ONSET (Pressure)	None	Velocity-Area Methods Hand-held Velocity Meter	NR

23	Forest of Dean	(Puttock et al., 2021)	A	3.3	Rainfall: November 2015-March 2019 Streamflow: November 2015-March 2019	Rainfall: NR Streamflow: 15 mins	4.1	Rural	UK	- Beaver dams	NR	Model Type: N/A Model: Generalized Linear Models	✓	Study determines whether flow regimes and flow responses to storm events were altered following the building of beaver dams and whether a flow attenuation effect could be significantly attributed to beaver activity	Rainfall: Radar data derived from the NIMROD system (Met Office, 2003) was used across sites Streamflow: In-situ submersible pressure transducer, water level through the culvert was converted to Streamflow using Manning's equation Instrumentation: MX2001	Culvert	Formed Constriction Methods Formed Constriction Methods - Culvert	NR
23	Woodland Valley	(Puttock et al., 2021)	A	3.3	Rainfall: November 2015-March 2019 Streamflow: November 2015-March 2019	Rainfall: NR Streamflow: 15 mins	1.34	Rural	UK	- Beaver dams	NR	Model Type: N/A Model: Generalized Linear Models	✓	Study determines whether flow regimes and flow responses to storm events were altered following the building of beaver dams and whether a flow attenuation effect could be significantly attributed to beaver activity	Rainfall: Radar data derived from the NIMROD system (Met Office, 2003) was used across sites Streamflow: An in-situ submersible pressure transducer, water level through the culvert was converted to Streamflow using Manning's equation Instrumentation: IMSL–GO100	Culvert	Formed Constriction Methods Formed Constriction Methods - Culvert	NR
24	Hepscott	(Quinn et al., 2013)	A	2	Rainfall: 2 years pre- interventions Streamflow: 2011-2013 2 years pre- interventions	Rainfall: Not referenced Streamflow: Not referenced	8	Rural	UK	- Leaky Barrier - Leaky Ponds	NR	NR	~	This study evaluates the effectiveness of a catchment- based flood mitigation approach to try to demonstrate the potential of small-scale NFM in rapidly responding rural catchments	Rainfall: 1 No. Rain gauge installed as part of the study Streamflow: 4 No. Stream gauge	None	Velocity-Area Methods Hand-held Velocity Meter	NR
24	Powburn	(Quinn et al., 2013)	A	2	Rainfall: 2 years pre- interventions Streamflow: 2011-2013 2 years pre- interventions	Rainfall: Not referenced Streamflow: Not referenced	10.7	Rural	UK	- Leaky Barrier - Leaky Ponds	NR	NR	~	This study evaluates the effectiveness of a catchment- based flood mitigation approach to try to demonstrate the potential of small-scale NFM in rapidly responding rural catchments	Rainfall: 1 No. Rain gauge installed as part of the study Streamflow: 4 No. Stream gauge	None	Velocity-Area Methods Hand-held Velocity Meter	NR
25	Glendey	(Richard, 2017)	G	11	Rainfall: Not referenced Streamflow: 2006-2017	Rainfall: Not referenced Streamflow: 15 mins	2	Rural	UK	- Land use changes	NR	Model Type: 1D Model: 1D Hydraulic Model	x	Investigating land use changes that included clear-felling of the plantation forest, removal of the gully woodland, introduction of tree debris to the watercourse	Rainfall: NR Streamflow: Water level sensor with velocity measurements, full details not provided	None	Velocity-Area Methods No details on flow conversion	NR
26	Blairfindy	(Fennell et al., 2020, 2023b, 2023a)	A	5.9	Rainfall: January 2015 – December 2020 Streamflow: January 2015 – December 2020	Rainfall: 15 mins Streamflow: 15 mins	6.6	Rural	UK	- Wooden leaky barrier - Earth leaky barrier	NR	Model Type: 1D-2D Model: MIKE SHE/MIKE 11 MODEL	~	To investigate the impacts of drought on water quantity and temperature in an upland catchment used by the distilling industry, to reveal the role of groundwater in maintaining streamflow	Rainfall: 2 No. rain gauges within 1km vicinity of the site Instrumentation: ARG100 tipping bucket rain gauge Streamflow: 2 No. Water level in rated section (50 Streamflow gauging across the full range of stage observations) Instrumentation: Rugged TROLL100 level- logger	None	Formed Constriction Methods Weir Method	RAFs: Mobilization ~£2k; Installation ~£3.5k 31.5k; Materials ~£0.5k–9k
27	0	(Shuttlewor th et al., 2019)	A	4.5	Rainfall: June 2010- December 2014 Streamflow: June 2010- December 2014	Rainfall: 10 mins Streamflow: 10 mins	0.044 48	Rural	UK	- Peatland restoration	NR	NR S	✓ 	To assess the hydrological impacts of NFM interventions at multiple spatial scales, using detailed empirical monitoring to evaluate changes in runoff, flow pathways, and peak flow reduction	Rainfall: 2 No. rain gauges within 1km vicinity of the site for June 2010- September 2011 (pre-intervention) then April 2012-December 2014 (post- intervention) Streamflow: Level sensor detecting flow over a v-notch weir, converted to streamflow and normalised to catchment area for June 2010-September 2011 (pre- intervention) then April 2012-December 2014 (post-intervention)	V notch weir	Formed Constriction Methods Weir Method	NR

27	N Prinknash Abbey	(Shuttlewor th et al., 2019) (Taylor & Clarke,	A	4.5 0.6	Rainfall: June 2010- December 2014 Streamflow: June 2010- December 2014 Rainfall: Not referenced	Rainfall: 10 mins Streamflow: 10 mins Rainfall: Not referenced	0.070 96 1.65	Rural	UK	 Peatland restoration Gully blocking Leaky barriers 	NR	NR	×	To assess the hydrological impacts of NFM interventions at multiple spatial scales, using detailed empirical monitoring to evaluate changes in runoff, flow pathways, and peak flow reduction This project focuses on evaluation of the leaky barriers	Rainfall: 2 No. rain gauges within 1km vicinity of the site for June 2010- September 2011 (pre-intervention) then April 2012-December 2014 (post- intervention) Streamflow: Level sensor detecting flow over a v-notch weir, converted to streamflow and normalised to catchment area for June 2010-September 2011 (pre- intervention) then April 2012-December 2014 (post-intervention) Rainfall: NR	V notch weir None	Formed Constriction Methods Weir Method Velocity-Area Methods	NR
		2021)			Streamflow: January – August 2020	Streamflow: Not referenced								on the connectivity, hydrology and geomorphology	Streamflow: Water level sensors on the stream with free flood warning service to residents		Hand-held Velocity Meter	
28	Workman' s Wood	(Taylor & Clarke, 2021)	A	0.6	Rainfall: Not referenced Streamflow: January – August 2020	Rainfall: Not referenced Streamflow: Not referenced	5.27	Rural	UK	- Leaky barriers	NR	NR	x	This project focuses on evaluation of the leaky barriers on the connectivity, hydrology and geomorphology	Rainfall: NR Streamflow: Water level sensors on the stream with free flood warning service to residents	None	Velocity-Area Methods Hand-held Velocity Meter	NR
29	Great Triley Wood	(Robinwood , 2007; Thomas & Nisbet, 2021) (Robinwood , 2007)	G	19.7	Streamflow: 2005-Present	Streamflow: 5 mins		Kurai	UK	- 9 No. large woody dams - Native woodland planting	NK	ID Model: Infoworks	~	undergrowth and woody debris affect the hydraulic roughness of the floodplain and therefore the storage and passage of flood flows	Streamflow: 4 No. water level recorders upstream and downstream of woody dams	None	Methods Hand-held Velocity Meter	±160Κ
30	Littlestock Brook	(Trill et al., 2022)	A	3.9	Rainfall: March 2017- February 2021 Streamflow: March 2017- February 2021	Rainfall: 2 mins Streamflow: 5 mins	16.3	Rural	UK	 27 No. Woody dams (total) 15 No. riparian bunds Woodland Planting 	NR	Model Type: 1D Model: InfoWorks ICM	~	The purpose of the study was to evaluate the effectiveness of a five-year NFM trial in reducing flood risk and improving water quality, through the implementation of a range of landscape-scale interventions	Rainfall: 1 No. rain gauge installed and 1 No. already in vicinity. 1 No Storage rain gauge. Stored rainwater was emptied into a graduated cylinder for validation. Instrumentation: Casella Tipping Bucket Rain Gauge Streamflow: 8 No. Water level, velocity, flow (spot gaugings). Salt dilution gauging for low flows. Instrumentation: Level TROLL 100 and 500 (Level), Valeport Electromagnetic Current Meter (Spot gauging)	None	Velocity-Area Methods Salt Dilution	NR
31	Burnieshe d Burn	(van Biervliet, 2024)	A	1.6	Rainfall: August 2017 – March 2019 Streamflow: August 2017 – March 2019	Rainfall: 15 mins Streamflow: 15 mins	1.6	Rural	UK	- Beaver dams	NR	Model Type: 1D Model: MIKE 11	~	To better understand the hydrological effects of beaver dams at spatial scales from the individual beaver dam to the sub-catchment scale using field and numerical modelling approaches	Rainfall: 1 No. rain gauge installed, no reference to distance Streamflow: 3 No. V notch weirs with stilling wells and pressure transducers. Ultrasonic Doppler Flow Meter. Salt Dilution and Volumetric Gauging	V-notch weir	Velocity-Area Methods - Weir Method - Salt Dilution - Volumetric Gauging	NR
31	Woods Lake	(van Biervliet, 2024; Burns & McDonnell, 1998)	A	1.9	Rainfall: NR Streamflow: November 1988-October 1990	Rainfall:NR Streamflow: 15 mins	0.413	Rural	USA	- Beaver dams	NR	NR	x	This study investigates how a beaver pond influences runoff processes and the neutralization of acidic precipitation	Rainfall: NR Streamflow: Parshall Flume with water level	Parshall Flume	Formed Constriction Methods Flume Method	NR
31	Talladega	(van Biervliet, 2024; Chaubey &	A	1	Rainfall: 1994- 1995	Rainfall: 5 mins	3.86	Rural	USA	- Beaver dams	NR	NR	✓	This study examines the hydrologic balance of a natural riparian wetland in the southeastern USA, offering	Rainfall: Two gauges were installed in open areas to obtain the total rainfall, while four rain gauges were installed beneath vegetation canopy to measure throughfall.	None	Velocity-Area Methods	NR

		Ward, 2006;)			Streamflow: 1994-1995	Streamflow: 5 mins								insights for modelling and managing wetlands in temperate and subtropical climates	Streamflow: Pressure transducers and dataloggers. At each gauge a stage streamflow relationship was developed using measured stage, an instantaneous flow was measured weekly (or biweekly) and the relations were updated as necessary. Instrumentation: CR10X		Hand-held Velocity Meter	
31	James Bay	(van Biervliet, 2024; Woo & Waddington , 1990)	A	1	Rainfall: 1988 only Streamflow: 1988 only	Rainfall: NR Streamflow: NR	0.008	Rural	Can ada	- Beaver dams	NR	NR	~	This study explores how beaver dams in subarctic wetlands alter streamflow, evaporation, and drainage patterns	Rainfall: Weathertronics tipping-bucket rain gauge Streamflow: Leupold-Stevens Type-F water level recorders, groundwater wells	None	Velocity-Area Methods Hand-held Velocity Meter	NR
32	Yorkshire Dales	(van Leeuwen, 2021)	A	2.4	Rainfall: Not referenced Streamflow: September 2017 – February 2020	Rainfall: 15 mins Streamflow: 1 mins	4.7	Rural	UK	- 8 No. leaky dams	NR	Model Type: 1D Model: HEC- RAS	x	To quantify the benefits and risks of installing engineered leaky dams for the purpose of NFM in an upland, headwater catchment	Rainfall: EA rain gauge 10km from the site Streamflow: Pressure gauges with salt dilution gauging for establishing stage Streamflow, calibrated with HEC-RAS model. Instrumentation: In-Situ Rugged TROLL 100	None	Velocity-Area Methods Salt Dilution	NR
33	Coverdale	(van Leeuwen et al., 2024)	A	2.4	Rainfall: Not referenced Streamflow: September 2017 – February 2020	Rainfall: Sub- Daily Streamflow: 1 mins	1.1	Rural	UK	- Leaky dams	NR	Model Type: 1D Model: HEC- RAS	x	To assess the effectiveness of NFM interventions on flood peak reduction and water quality, focusing on both hydrological and ecological outcomes	Rainfall: EA rain gauge 10km from the site Streamflow: Pressure gauges with salt dilution gauging for establishing stage Streamflow, calibrated with HEC-RAS model. Instrumentation: In-Situ Rugged TROLL 100	None	Velocity-Area Methods Salt Dilution	NR

Correspondence

Anthony D. Jones, Department of Earth Sciences, Durham University, Durham, DH1 3LE, UK Email: anthony.d.jones@durham.ac.uk

Funding information

This work was supported by the Natural Environment Research Council via an IAPETUS2 PhD studentship held by Anthony Jones (Grant/Award Number: NE/S007431/1)

References

Amini, A., Ghazvinei, P. T., Javan, M., & Saghafian, B. (2014). Evaluating the impacts of watershed management on runoff storage and peak flow in Gav-Darreh watershed, Kurdistan, Iran. Arabian Journal of Geosciences, 7(8), 3271–3279. https://doi.org/10.1007/s12517-013-0950-1

Baggio, T., Bettella, F., Bortolini, L., & d'Agostino, V. (2023). Hydrologic performance assessment of nature-based solutions: A case study in North-eastern Italy. Journal of Agricultural Engineering, 54(2). https://doi.org/10.4081/jae.2023.1485

Biggs, J., Bonney, S., & Stoate, C. (2021). Case study: Upper Welland Water Friendly Farming Project. Restorerivers. Eu. https://restorerivers.eu/wiki/index.php?title=Case_study%3AUpper_Welland_Water_Friendly_Farming_Project

Biggs, J., Stoate, C., Williams, P., Brown, C., Casey, A., Davies, S., Diego, I., Hawczak, A., Kizuka, T., McGoff, E., & Szczur, J. (2014). Water Friendly Farming. Results and practical implications of the first 3 years of the programme. Freshwater Habitats Trust, Oxford, and Game & Wildlife Conservation Trust, Fordingbridge.

Birkinshaw, S. J., Bathurst, J. C., & Robinson, M. (2014). 45 years of non-stationary hydrology over a forest plantation growth cycle, Coalburn catchment, Northern England. Journal of Hydrology, 519, 559–573. https://doi.org/10.1016/j.jhydrol.2014.07.050

Black, A., Peskett, L., MacDonald, A., Young, A., Spray, C., Ball, T., Thomas, H., & Werritty, A. (2021). Natural flood management, lag time and catchment scale: Results from an empirical nested catchment study. Journal of Flood Risk Management, 14(3), e12717. https://doi.org/10.1111/jfr3.12717

Bond, S., Kirkby, M. J., Johnston, J., Crowle, A., & Holden, J. (2020). Seasonal vegetation and management influence overland flow velocity and roughness in upland grasslands. Hydrological Processes, 34(18), 3777–3791. https://doi.org/10.1002/hyp.13842

Brazier, R. E., Elliot, M., Andison, E., Auster, R. E., Bridgwater, S., Burgess, P., Chant, J., Graham, H., Knott, E., Puttock, A., Sansum, P., & Vowles, A. (2020). River Otter Beaver Trial: Science and Evidence Report. Devon Wildlife Trust. https://www.devonwildlifetrust.org/what-we-do/our-projects/river-otter-beaver-trial

Burns, D. A., & McDonnell, J. J. (1998). Effects of a beaver pond on runoff processes: Comparison of two headwater catchments. Journal of Hydrology, 205(3), 248–264. https://doi.org/10.1016/S0022-1694(98)00081-X

Chaubey, I., & Ward, G. (2006). Hydrologic budget analysis of a small natural wetland in Southeast USA. Journal of Environmental Informatics, 8, 10–21. https://doi.org/10.3808/jei.200600073

Comins, L., Garft, D., Spray, C., & MacDonald, A. (2021). Case study 9. Eddleston Water Project. https://ewn.erdc.dren.mil/wp-content/uploads/2021/03/case_study_9_eddleston.pdf

Deasy, C., Titman, A., & Quinton, J. N. (2014). Measurement of flood peak effects as a result of soil and land management, with focus on experimental issues and scale. Journal of Environmental Management, 132, 304–312. https://doi.org/10.1016/j.jenvman.2013.11.027

Devon County Council. (2023). Natural Flood Management at Higher Boode Farm, Braunton. North Devon Biosphere. https://www.northdevonbiosphere.org.uk/uploads/1/5/4/4/15448192/working_with_natural_processes_poster_-_boode_farm.pdf

European Commission. (2023). Leeds road water level monitor. https://www.data.gov.uk/dataset/ff592a43-9906-448f-8e08-957e96703723/ilkley-moor-water-level-monitor

Fennell, J., Geris, J., Wilkinson, M. E., Daalmans, R., & Soulsby, C. (2020). Lessons from the 2018 drought for management of local water supplies in upland areas: A tracer-based assessment. Hydrological Processes, 34(22), 4190–4210. https://doi.org/10.1002/hyp.13867

Fennell, J., Soulsby, C., Wilkinson, M. E., Daalmans, R., & Geris, J. (2023a). Assessing the role of location and scale of nature based solutions for the enhancement of low flows. International Journal of River Basin Management, 21(4), 743–758. https://doi.org/10.1080/15715124.2022.2092490

Fennell, J., Soulsby, C., Wilkinson, M. E., Daalmans, R., & Geris, J. (2023b). Time variable effectiveness and cost-benefits of different nature-based solution types and design for drought and flood management. Nature-Based Solutions, 3, 100050.

Ferguson, C., & Fenner, R. (2020). The impact of Natural Flood Management on the performance of surface drainage systems: A case study in the Calder Valley. Journal of Hydrology, 590, 125354. https://doi.org/10.1016/j.jhydrol.2020.125354 Graham, H. (2022). Quantifying the impact and expansion of Eurasian beaver in Great Britain [Phd, Doctoral dissertation, University of Exeter]. https://ore.exeter.ac.uk/repository/handle/10871/132143 Herefordshire Council. (2024). Herefordshire Natural Flood Management (NFM) Construction Grant Scheme guidance. https://www.herefordshire.gov.uk/nfmgrant Janzen, K., & Westbrook, C. J. (2011). Hyporheic Flows Along a Channelled Peatland: Influence of Beaver Dams. Canadian Water Resources Journal, 36(4), 331–347. https://doi.org/10.4296/cwrj3604846 Kitts, D. R. (2010). The hydraulic and hydrological performance of large wood accumulation in a low-order forest stream [Doctoral dissertation, University of Southampton]. https://eprints.soton.ac.uk/185791/ Labadz, J., Wells, J., & Disney, A. (2021). Case study 25. Brackenhurst Natural Flood Management. Environment Agency. https://safag.org/wp-content/uploads/2020/07/25 Brackenhurst.pdf Lalisan, C. L., & Fornis, R. L. (2020). Attenuation performance of runoff storage basins within a moderate to steep slope urban catchment in Cebu. Philippines, AIP Conference Proceedings, 2278(1), 020002, https://doi.org/10.1063/5.0014958

Lockwood, T. H. (2022). Quantifying the efficacy of Natural Flood Management in agricultural headwater catchments [Doctoral dissertation, University of Bristol]. https://research-information.bris.ac.uk/en/studentTheses/quantifying-the-efficacy-ofnatural-flood-management-in-agricultu

Mindham, D., Beven, K., & Chappell, N. (2023). Rainfall-streamflow response times for diverse upland UK micro-basins: Quantifying hydrographs to identify the nonlinearity of storm response. Hydrology Research, 54(2), 233–244. https://doi.org/10.2166/nh.2023.115

Muhawenimana, V., Follett, E., Maddock, I., & Wilson, C. A. M. E. (2023). Field-based monitoring of instream leaky barrier backwater and storage during storm events. Journal of Hydrology, 622, 129744. https://doi.org/10.1016/j.jhydrol.2023.129744

Nicholson, A., Quinn, P., & Wilkinson, M. (2021). Case study 16. Belford Natural Flood Management Scheme, Northumberland. Environment Agency. https://ewn.erdc.dren.mil/wp-content/uploads/2021/03/case_study_16_belford.pdf

Nicholson, A. R., O'Donnell, G. M., Wilkinson, M. E., & Quinn, P. F. (2020). The potential of runoff attenuation features as a Natural Flood Management approach. Journal of Flood Risk Management, 13(S1), e12565. https://doi.org/10.1111/jfr3.12565

Nisbet, T. (2021). Case study 27. Investigating the Impacts of Upland Land Use Management on Flood Risk at Pontbren, Wales. https://hedgelink.org.uk/research/case-study-27-investigating-the-impacts-of-upland-land-use-management-on-flood-riskat-pontbren-wales/

Norbury, M., Phillips, H., Macdonald, N., Brown, D., Boothroyd, R., Wilson, C., Quinn, P., & Shaw, D. (2021). Quantifying the hydrological implications of pre- and post-installation willowed engineered log jams in the Pennine Uplands, NW England. Journal of Hydrology, 603, 126855. https://doi.org/10.1016/j.jhydrol.2021.126855

Nottinghamshire Council. (2023). Nottinghamshire preliminary flood risk assessment. Nottingham Council. https://www.nottinghamshire.gov.uk/media/5082530/nottinghamshirepreliminaryfloodriskassessment2023-2029.pdf

Nyssen, J., Pontzeele, J., & Billi, P. (2011). Effect of beaver dams on the hydrology of small mountain streams: Example from the Chevral in the Ourthe Orientale basin, Ardennes, Belgium. Journal of Hydrology, 402(1), 92–102. https://doi.org/10.1016/j.jhydrol.2011.03.008

Puttock, A., Graham, H. A., Ashe, J., Luscombe, D. J., & Brazier, R. E. (2021). Beaver dams attenuate flow: A multi-site study. Hydrological Processes, 35(2), e14017. https://doi.org/10.1002/hyp.14017

Quinn, P., O'Donnell, G., Nicholson, A., Wilkinson, M., Owen, G., Jonczyk, J., Hardwick, M., & Davies, G. (2013). Potential Use of Runoff Attenuation Features in Small Rural Catchments for Flood Mitigation. Richard, J. (2017). Flood planner: A manual for the natural management of river floods [Report]. World Wildlife Fund. https://www.preventionweb.net/publication/flood-planner-manual-natural-management-river-floods

Roberts, M. T., Wilkinson, M. E., Hallett, P. D., & Geris, J. (2024). New data-based analysis tool for functioning of natural flood management measures reveals multi-site time-variable effectiveness. Journal of Hydrology, 635, 131164. https://doi.org/10.1016/j.jhydrol.2024.131164

Richard, J. (2017). Flood planner: A manual for the natural management of river floods [Report]. World Wildlife Fund. https://www.preventionweb.net/publication/flood-planner-manual-natural-management-river-floods

Roberts, M. T., Wilkinson, M. E., Hallett, P. D., & Geris, J. (2024). New data-based analysis tool for functioning of natural flood management measures reveals multi-site time-variable effectiveness. Journal of Hydrology, 635, 131164. https://doi.org/10.1016/j.jhydrol.2024.131164

Robinwood. (2007). The Robinwood robinflood report: Evaluation of large woody debris in watercourses [Report]. Eden Rivers Trust. https://edenriverstrust.org.uk/your-eden/explore-edens-rivers/leaky-dams/

Shuttleworth, E. L., Evans, M. G., Pilkington, M., Spencer, T., Walker, J., Milledge, D., & Allott, T. E. H. (2019). Restoration of blanket peat moorland delays stormflow from hillslopes and reduces peak discharge. Journal of Hydrology, 2, 100006. https://doi.org/10.1016/j.hydroa.2018.100006

Taylor, M., & Clarke, L. (2021). Monitoring the impact of leaky barriers used for natural flood management on three river reaches in the Stroud Frome and Twyver catchments, Gloucestershire, UK [Report]. University of Gloucestershire. https://eprints.glos.ac.uk/10102/7/10102-Clarke-%282021%29-Monitoring-the-impact-of-leaky-barriers-used.pdf

Thomas, H., & Nisbet, T. (2021). Case study 29. Investigating the interaction between semi-natural floodplain woodland and flood flows at Great Triley Wood. https://www.gov.uk/flood-and-coastal-erosion-risk-management-research-reports/working-with-natural-processes-to-reduce-flood-risk

Trill, E., Robotham, J., Bishop, J., Old, G., Rameshwaran, P., & Gasca-Tucker, D. (2022). Littlestock Brook natural flood management pilot: Hydrological and water quality monitoring and analysis report [Report]. https://nora.nerc.ac.uk/id/eprint/533217/

van Biervliet, O. (2024). The hydrological effects of the Eurasian beaver (Castor fiber) in a UK headwater catchment [Doctoral dissertation, University College London]. https://discovery.ucl.ac.uk/id/eprint/10192241/1/van%20Biervliet_thesis.pdf

van Leeuwen, Z. R. (2021). Natural flood management potential of leaky dams in upland catchments [Doctoral dissertation, University of Leeds]. https://etheses.whiterose.ac.uk/30353/

van Leeuwen, Z. R., Klaar, M. J., Smith, M. W., & Brown, L. E. (2024). Quantifying the natural flood management potential of leaky dams in upland catchments, Part I: A data-based modelling approach. Journal of Hydrology, 628, 130448. https://doi.org/10.1016/j.jhydrol.2023.130448

Villamizar, M. L., Stoate, C., Biggs, J., Szczur, J., Williams, P., & Brown, C. D. (2024). A model for quantifying the effectiveness of leaky barriers as a flood mitigation intervention in an agricultural landscape. River Research and Applications, 40(3), 365–378. https://doi.org/10.1002/rra.4241

Wells, J. (2019). Natural flood management: Assessing the barriers to wider implementation [Doctoral dissertation, Nottingham Trent University]. https://irep.ntu.ac.uk/id/eprint/39674/

Wheater, H., Reynolds, B., Mcintyre, N., Marshall, M., Jackson, B., Frogbook, Z., Solloway, I., Francis, O., Chell, J., & Bangor, C. (2008). Impacts of upland land management on flood risk: Multi-scale modelling methodology and results from Pontbren experiment. Flood Risk Management Research Consortium. https://nora.nerc.ac.uk/id/eprint/5890/

Wilkinson, M. E., Quinn, P. f., & Welton, P. (2010). Runoff management during the September 2008 floods in the Belford catchment, Northumberland. Journal of Flood Risk Management, 3(4), 285–295. https://doi.org/10.1111/j.1753-318X.2010.01078.x

Woo, M., & Waddington, J. M. (1990). Effects of Beaver Dams on Subarctic Wetland Hydrology. ARCTIC, 43(3), Article 3. https://doi.org/10.14430/arctic1615